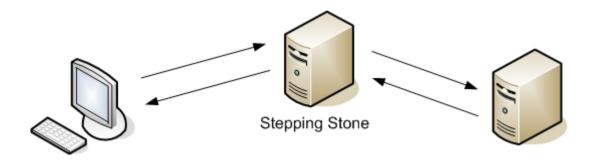


Erkennung von Stepping Stones in breitbandigem Netzwerkverkehr

Agenda


- Einleitung
- Algorithmen zur Erkennung
- Vergleich der Algorithmen
- Fazit und Ausblick

Einleitung

Intrusion Detection

Stepping Stones

Algorithmen zur Erkennung

- Vergleichskriterien
- Algorithmen
- Vorauswahl der betrachteten Algorithmen

Algorithmen zur Erkennung: Vergleichskriterien

- Inhalts- / Timingbasiert
- Aktiv / Passiv
- Realtime- / Offlineanalyse
- Anzahl der Meßpunkte

Algorithmen zur Erkennung: Qualitative Merkmale

- Erkennungsrate
- Geschwindigkeit
- Speicherverbrauch

Algorithmen zur Erkennung: Umgehung der Erkennung

- Veränderung des Timings
- Chaff-Pakete
- Überlastung

Algorithmen zur Erkennung: Algorithmen

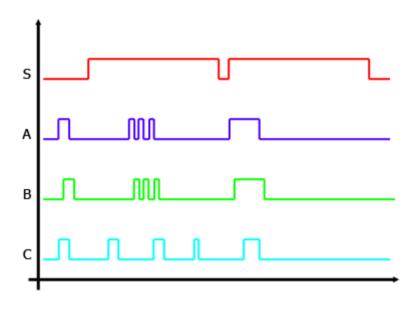
- ON/OFF Algorithmus
- Watermarking Algorithmus
- Abstandsalgorithmus
- Interpacket-Delay Algorithmus
- Wavelet Algorithmus
- Paket-Zähler Algorithmus
- Hop-Count Algorithmus

Algorithmen zur Erkennung: ON/OFF Algorithmus

- Zhang / Paxson (2000)
- timingbasierte Analyse
- passiv
- Online und Offline möglich
- ein Meßpunkt
- geringe CPU-Last
- geringer Speicherverbrauch

Algorithmen zur Erkennung: ON/OFF Algorithmus

Parameter T_{idle}


- Parameter δ
- Parameter γ
- Parameter γ'
- Parameter min_{csc}

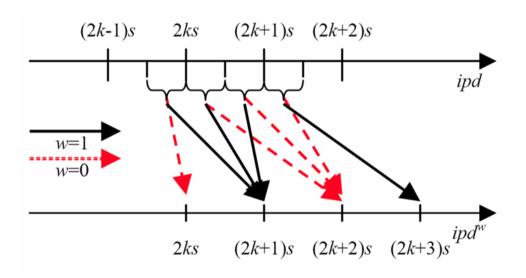
$$\frac{OFF_{1,2}}{\min(OFF_1, OFF_2)} \ge \gamma$$

$$\frac{OFF_{1,2}^*}{\min(OFF_1, OFF_2)} \ge \gamma'$$

Algorithmen zur Erkennung: ON/OFF Algorithmus

Algorithmen zur Erkennung: Watermarking Algorithmus

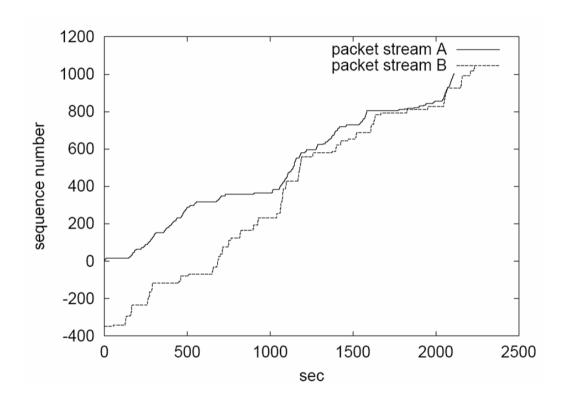
- Wang / Reeves (2003)
- timingbasierte Analyse
- aktiv
- nur Online möglich
- mehrere Meßpunkte möglich
- geringe CPU-Last
- geringer Speicherverbrauch



Algorithmen zur Erkennung: Watermarking Algorithmus

- Einbettung eines Wasserzeichens
- Anschließende Erkennung
- Robust gegen Timingveränderung

Algorithmen zur Erkennung: Watermarking Algorithmus



Algorithmen zur Erkennung: Abstandsalgorithmus

- Yoda / Etoh (2000)
- timingbasierte Analyse
- passiv
- Online und Offline möglich
- ein Meßpunkt
- hohe CPU-Last
- hoher Speicherverbrauch

Algorithmen zur Erkennung: Abstandsalgorithmus

Algorithmen zur Erkennung: Interpacket-Delay Algorithmus

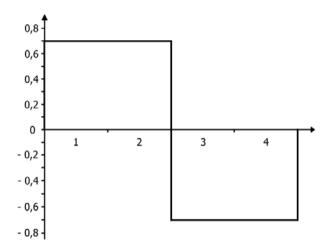
- Wang / Reeves / Wu (2002)
- timingbasierte Analyse
- passiv
- Online und Offline möglich
- ein Meßpunkt
- hohe CPU-Last
- hoher Speicherverbrauch

Algorithmen zur Erkennung: Interpacket-Delay Algorithmus

Correlation Point Funtion (CPF)

Correlation Value Function (CVF)

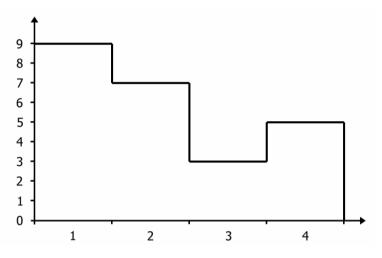
- Donoho / Flesia / Shanker /
 Paxson / Coit / Staniford (2002)
- timingbasierte Analyse
- passiv
- Online und Offline möglich
- ein Meßpunkt
- mittlere CPU-Last
- hoher Speicherverbrauch

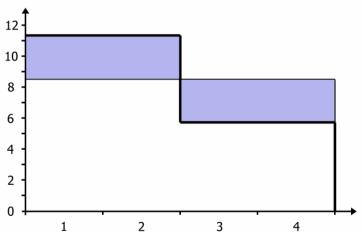


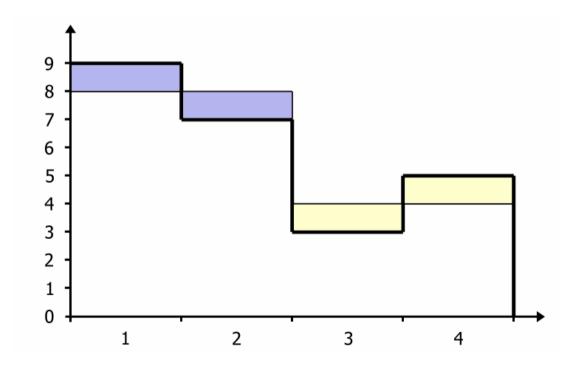
Wavelet-Transformation

- Signalverarbeitung
- Bildkompression
- Fokusierung auf relevante Teile
- Komposition einer einfachen Funktion

Haar-Wavelet (1909)




Daubechies 12 - Wavelet


- Ausgangsfunktion (9,7,3,5)
- Wavet-Transformation
 (12, 4, √2, √2)
- Erster Schritt der Rekonstruktion

- Zweiter Schritt
- perfekte Rekonstruktion

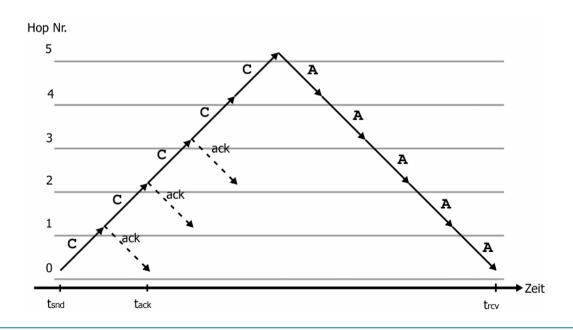
- Filterbankimplementierung
- log₂(2ⁿ) Schritte
- Summe der Pakete je Zeiteinheit
- 64 Zeiteinheiten

Algorithmen zur Erkennung: Paket-Zähler Algorithmus

- Blum / Song / Venkataraman (2004)
- timingbasierte Analyse
- passiv
- Online und Offline möglich
- ein Meßpunkt
- geringe CPU-Last
- geringer Speicherverbrauch

Algorithmen zur Erkennung: Paket-Zähler Algorithmus

- Paketabhängigkeit zwischen Strömen
- Divergierende Paketanzahl
- Mathematische Sicherheiten


Algorithmen zur Erkennung: Hop-Count Algorithmus

- Yung (2002)
- timingbasierte Analyse
- passiv
- Online und Offline möglich
- ein Meßpunkt
- geringe CPU-Last
- geringer Speicherverbrauch

Algorithmen zur Erkennung: Hop-Count Algorithmus

- Delayed Acknowledgement
- Echo Reply
- Ab 2 Steps downstream

Algorithmen zur Erkennung: Vorauswahl

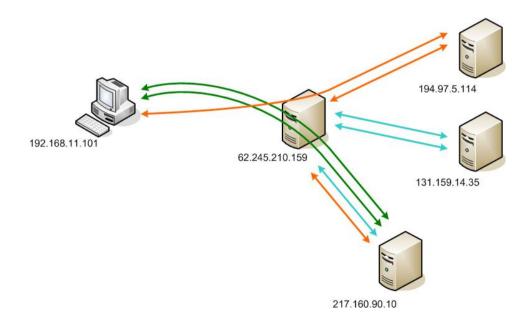
	Aktiv/ Passiv	Online/ Offline	Inhalt/ Timing	Referenz- implement.
* On/Off Alg.	Passiv	On-/Offline	Timing	Ja (bro)
Watermarking Alg.	Aktiv	Online	Timing	Ja
Abstandsalg.	Passiv	On-/Offline	Timing	Ja
* IPD Algorithmus	Passiv	On-/Offline	Timing	Ja
* Wavelet Alg.	Passiv	On-/Offline	Timing	Nein
* Paket-Zähler Alg.	Passiv	On-/Offline	(Timing)	Nein
Hop-Count Alg.	Passiv	On-/Offline	Timing	Ja

Vergleich der Algorithmen

- Datenumfeld
- Implementierungsumfeld
- Gemeinsamkeiten der Implementierung
- Vorfilterung
- Besonderheiten der Implementierung
- Ergebnisse

Vergleich der Algorithmen: Datenumfeld

- MWN
- Traces
 - 10 GB Traces
 - Mit / Ohne leo.org
 - Login-Daten (SSH/Telnet/RLogin)
 - Kleinere Traces net-cs, net-login, halle-cs, halle-login


Vergleich der Algorithmen: Implementierungsumfeld

- Bro
- Waveletbibliothek

Vergleich der Algorithmen: Gemeinsamkeiten

- C++ Anteil
- Bro-Script
- Testparcours

Vergleich der Algorithmen: Vorfilterung

- 2-stufige Vorfilterung
 - libpcap-Filter
 - Analyse-Filter

Vergleich der Algorithmen: Besonderheiten

- IPD: Analyse bei Verbindungsende
- WT: CPU-lastigere Implementierung
- PZ: 1 Objekt je Verbindungspaar
- OO: basierend auf On-Periode

Vergleich der Algorithmen: Ergebnisse

- kein Algorithmus läuft auf großen Traces
- Problem: quadratische Laufzeit / Speicherverbrauch
- fast ausschließlich SSH-Verbindungen

Vergleich der Algorithmen: Ergebnisse On/Off Algorithmus

- Performance gut
- Kontroll-Stepping-Stone nicht gefunden
- Speicher-Bug

Vergleich der Algorithmen: Ergebnisse IPD Algorithmus

- Performance schlecht
- Kontroll-Stepping-Stone gefunden
- Problem: lange Verbindungen

Vergleich der Algorithmen: Ergebnisse Wavelet Algorithmus

- Performance gemischt
- Kontroll-Stepping-Stone nicht gefunden
- Problem: lange Verbindungen
- Abhängigkeit vom Schwellwert

Vergleich der Algorithmen: Ergebnisse Paketzähler

- Performance gut
- Kontroll-Stepping-Stone (nicht) gefunden
- Problem: Speicherverbrauch
- Extrem abhängig von der Parametern

Fazit

- Breitbandiger Einsatz problematisch
- Auf kleineren Netzen gut einsetzbar
- Vorfilterung sehr wichtig
- Problem: Legaler Einsatz